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Energy localization in two chaotically coupled systems
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We set up and analyze a random matrix model to study energy localization and its time behavior in two
chaotically coupled systems. This investigation is prompted by a recent experimental and theoretical study of
Weaver and Lobkis on coupled elastomechanical systems. Our random matrix model properly describes the
main features of the findings by Weaver and Lobkis. Due to its general character, our model is also applicable
to similar systems in other areas of physics—for example, to chaotically coupled quantum dots.
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I. INTRODUCTION correlations function$2-5]. This is so, for example, in the
- case of the presently much discussed fidelity; see Refs.

The statistical features of coupled systems have attractgq g_19 and references therein. Another example is the study
considerable interest in many branches of physics. Randoig e energy spread in chaotic systef@8,21]. In the con-
matrix theory(RMT) has been successfully used in many of gx; of coupled systems, the time evolution of wave packets
those investigations. RMT was founded by Wightk Itisa 45 investigated in Ref22].
schematic modgP] in which the Hamiltonian, or, more gen- | the present contribution, we study energy localization
erally, the wave operator of the system, is replaced by & wwo coupled systems in the time domain. This problem
random matrix. The necessary prerequisite is that the systef)as addressed in a recent work by Weaver and Lo
be sufficiently “complex,” implying that the matrix elements \yho measured the time dependence of the wave intensity
of the Hamiltonian, or wave operator, calculated in an arbi-istribytion in two coupled reverberation rooms. To this end,
trary basis, behave like random numbers. It has been showfese authors recorded the time response to an elastic exci-
that the spectral fluctuations in numerous different systemsgtion of two coupled aluminum cubes. Moreover, they in-
if measured on the scale of the local mean-level spacing, argestigated the same problem theoretically and they numeri-
very well modeled by RMT; see the reviews in Ref8=5]. ¢y calculated the response in coupled two-dimensional
Due to the connection with chaos, one frequently refers tQ,empranes. In our study, we set up and analyze an RMT
those systems as quantum chaotic which show correlationgadel. based on the approaches in REfS,7,13. Its gen-
of RMT type. Similarly, systems are often referred 10 @Serg| character makes our model useful for similar problems
regular if they lack spectral correlations. _in different physics contexts. In particular, we expect that our

We consider two coupled systems. We assume that eithegy T approach also applies to coupled quantum dots.
the two systems are chaotic before they are coupled or that The article is organized as follows. In Sec. Il we sketch
the coupling itself mfcroduces .ch.aonmty if the separate SYSthe work of Weaver and Lobk{@3]. In Sec. Il we set up the
tems are regular. This scenario is equivalent to the breaking\T model and analyze it analytically and numerically. We
of symmetries, if only two values of the quantum numbercompare our results to those of Weaver and Lobkis in Sec.

belonging to that symmetry are taken into account. The stan, piscussion and conclusions are given in Sec. V.
tistical features crucially depend on the strength of the cou-

pling measured on the scale of the local mean-level spacing.
Many studies have been devoted to this issue of chaotically !l EXPERIMENT AND NUMERICAL CALCULATIONS
coupled systems or, equivalently, to symmetry breaking. We
mention isospin breaking in nuclear physjés7], symmetry
breaking in molecular physicE8], symmetry breaking in
resonating quartz crystal®], and coupled microwave bil-
liards[10]. While these studies addressed the spectral corr
lation, several investigations in nuclear physit4—14 fo-
cused on the statistics of the wave functions and relate
observables in the presence of symmetry breaking or similai
0

effects. In all these cases, RMT approaches in the spirit 0fe ro0m, and the response was measured in the other room.

the Rosenzwelg—Porter moc[dls] were succes_sful. In this way, 16 different curves of energy intensity versus
Sometimes observables in the time domain such as speg

. ) ime were recorded, each in a small region around a different
tral form factors are more appropriate than the eigenenergiequency. The results show that the energy does not always

spread equally over the two rooms. If the coupling is weak,

then the wave intensity is higher in the room where the initial
*Electronic address: Johan.Grongvist@matfys.Ith.se excitation was performed than in the other room, regardless
"Electronic address: Thomas.Guhr@matfys.lth.se of how long one waits. Hence, the energy ratio never ap-

As we aim at a comparison with their findings, we present
the work of Weaver and Lobki3] in some detail. Thereby,
we also introduce the notation and conventions. The system
studied experimentally consists of two aluminum cubes
“oupled by a solid connection, manufactured out of a solid
luminum block. The corners of the cubes were removed to
esymmetrize the structure. This was done to ensure “cha-
tic” motion. Elastomechanical wave modes were excited in
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time t are defined as the total probability density of finding
the system stata(t) in one of the stategs,, i=1,2, which
are good eigenstates in rodm

Ei(t) = % |u(t) - gl (2

1.00 }
1.00 ik

0.50

Energy Ratio
o
[9,]
o
Energy Ratio

Strictly speaking,E;(t) is no energy. Nevertheless, we find

0 ‘ this terminology introduced in Ref23] appropriate and use

0 20 40 60 0 20 40 60 it as well, becausé;(t) measures the degree of motion in
Time (ms) Time (ms) roomi. If no energy dissipates into the surrounding environ-

{a) Low frequency bins (b) High frequency bins ment, the total energg=E;(t)+E,(t) is conserved—i.e., in-

dependent of time. In the sequel, it is always assumed that

Sthe system is excited in room 1 and the energy is measured in

room 2. Analytical solutions for two coupled states are pre-

sented in Ref[23] by employing different statistical assump-

tions.

0

FIG. 1. Results from the experiment by Weaver and Lobkis. Th
energy ratio between the different rooms is plotted versus time
ms). We note the different scales on tlyeaxes. Reprinted from
Ref.[23].

proaches unity. This deviation from the equipartition of the

energy in the two rooms is referred to as energy localization. I1l. RANDOM MATRIX MODEL

The resulting data are shown in Fig. 1, and as expected there . )

is localization in the bins of larger mean-level spacing, but We set up the model in Sec. Il A. The connection to the

not in the bins of small mean-level spacing. We will discusstwo-level form factor is established in Sec. 1lI B, and a 2

these results further in Sec. IV. X 2 version of the model is evaluated in Sec. Il C. We dis-
Two numerical studies were performed on membranesuss numerical simulations of the RMT model in Sec. Il D.

with rough boundarief23]. The dynamics of the system was Finally, we comment on chaotically coupled regular systems

in both cases governed by discretized wave equations in eadh Sec. Il E.

of the rooms, and the coupling was realized in different ways

in the two numerical calculations, to which we refer as N1 A. Setup of the model

and N2 in the sequel. In the first one, N1, the connection had ) ] )
the form of a window between the two membranes similar to  SPectral correlations in elastomechanics have been shown

the situation in the experimental setup. In the second numerfo be well described by RMT24]. This is also true in the
cal calculation, N2, the rooms were separated, but springgase of symmetry breakir[®], which is of direct relevance
were attached to a few different sites in rooms 1 and 2for the present study. Thus, RMT is also likely to be capable
thereby coupling those sites. In N1 and N2, a nonvanishin@f modeling the time behavior of elastomechanical systems.
initial condition was given to one site in one of the rooms,As the first-order Eq(1) has proved to be a good approxi-
and the response was calculated at different sites in the otheration to the experimental situation, we also base our model
room. The resulting time series were cosine-bell time win-on this Schrodinger type of equation. Thus, it is more natural
dowed to focus on a specific instant in time. Then, the timeo replace(C+?)/2Q by the random matri+ than to re-
series were Fourier transformed and integrated over a smallaceC itself. It turns out that this is indeed the best choice.
region in frequency to accumulate data around a certain fre- The appropriate RMT mode| iS an extension of the onhe

guency. As in the experiment, 16 different curves of intensityemp|oyed in Refs[7,13]. The random matrix4 modeling
versus time were obtained around different frequencies. Afhe operato(C+0?)/20 reads

different frequencies, the systems have different effective
couplings. Therefore, one expe¢3] the time behavior of [Hl 0 } { 0 V}
o

the different curves to differ in the degree of localization, as H= 0 H vl 0
. . . . . . 2
well as in the way in which this asymptotic saturation value
is reached. Due to the differences in the coupling mechaThe two matricedH;, i=1,2, model the uncoupled rooms 1
nism, there will also be differences between the results of N-and 2. They are real symmetric and have random entries. We
and N2. _ ~draw them from(two independentGaussian orthogonal en-
Moreover, Weaver and Lobkis performed an analyticalsembles(GOE's). As the rooms in the experiments and the

model study. The elastic wave equation for the state of theumerical calculations N1 and N2 were of the same size, the
systemU(t), say, is of second order in time. To focus on the eye| densities were also the same. This can be adjusted in

response in a narrow interval around a certain frequUédCy the RMT model by giving the matricés; the same statistical
the ansataJ(t) =u(texp(-iQt) is made with the assumption \yejghts and the same dimensibi such that & is the total

thatu(t) varies slowly with time. This leads to a first-order yimension ofH. The matrixV also has random entries. The

()

differential equation in time fou(t) which has the form strength of the coupling is measured by the dimensionless
9 2 parametera. It is sufficient to always assume=0. The
- Iau(t) =0 u(t), (1) statistical weight o/ is chosen such that the totdlis in the

GOE of 2N X 2N matrices fora=1.
where C is the wave operator of the original second-order We write the eigenvalue equation for the total Hamil-
equation. The energies,(t) and Ex(t) in rooms 1 and 2 at tonianH in the form
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HY, =¥, n=1,...,AN. (4) As all correlations have to be measuféé5| on the local
scale of the mean-level spaciig we introduce an unfolded
The eigenvalues), and eigenvector¥, are functions of the time r=Dt. This is also the scale on whiahacts; we intro-
coupling parameted. It is convenient to introduce the nota- duce the unfolded coupling parameter a/D. The energy
tion on the unfolded scale is then given by

N7 £5(7,\) = lim Ex(7/D,D\). (12)
\I’n — [\pln] , (5) 2 Nesos 2
2
" Small values ofx have a large effect on the correlation func-
whereW;,, i=1,2, is theprojection of ¥, onto the subspace tions if the mean-level spacing is small as well.
i. We emphasize tha¥;,, i=1,2, arefunctions of the cou-

pling parameter. The eigenvalue equations for the Hamil- B. Relation to the two-level form factor
toniansH; are written as We now derive an estimate for the time evolution of
E,(t,a) which should apply to strong-coupling strength—
Higan= 0nthn, n=1,... N, i.e., to a parametex which is large on the unfolded scale of
the mean-level spacing. If one assumes that the so8rce
Hothon = wonibon, N=1, ... N, (6) comprises excitations into all states,, one may average

over the direction of the source. We find, from E§),
where the eigenvalues,, and eigenvectorg;, are not func- 0 0o
tions of a. This difference betweeW;, and ¢, is an imme- — (1Dt
diate consequence of the fact thhdepends omy, while H; (E(te) =BU=THY 0 1 T, (12

. . - -'-
andH, do not. We will also use the notatiof,=(0,420)"  \yhere tH2 is the trace over théll) sector of the whole

for the corresponding R-dimensional vector with zeros in  \4irix—i.e. over the upper left block. The constBriesults

the firstN components. o from the average. Expanding the time evolution operator in
At time t=0, the system is excited in room one such thatiarms of the eigenvectors

the state of the total system can be written as

2N
_ iw t
o { ;] | - T(t) = z\pn expliw )W, (13)

) . o ) we arrive after a short calculation at
wheres in room one is not specified in detail. We referSo

as to the source. The time evolution of the source is then (E)(t,a) =B, (¥, - 1) (Vs - Uor)exfdi(w, — omt].
simply nm
. (14
u(t) =T(t)S, whereT(t) = exp(iHt) (8)
The vectors¥,,, andW¥,, are, according to Eq5), the pro-

is the time evolution operator. Using the eigenvect;bﬁ,% jections of the full eigenvecto¥,, onto the subspaces corre-

the energy in room 2 is thus given by sponding to the two rooms. They depend on the coupling
parametera. These vectors coincide with the eigenvectors
N R N o for the matricesH; and H, only for =0. Hence, they are
Ex(t,a) = ) [U(t) - ¢onl?>= > (T()) T (T(H)S) only orthogonal in this special case. For all values 0, the
n=1 n=1 scalar productsV,,-¥,, and¥,,- ¥, are neither zero nor

0 0 given by &, The ensemble average over the eigenenergies
=ST(1) 01 T(H)S. (99  w, and over the eigenfunction®, decouples only for the
N parameter valuegx=0 and a=1—i.e., if the system either

The block matrix only contains the unit matrix, for room falls into two GOE's or is represented by one GOE. We now

2. We writeE,(t, a) instead ofE,(t) to emphasize the depen- €Stimate the ensemble average of the engegy(t, ) by
dence on the coupling parameterin the RMT model. We making the approximation that the averages over eigenener-
will study averages,(t,) over the ensemble of matrices 91€S and eigenfunctions decouple. For strong coupling this

introduced in Eq.(3). Occasionally, we will also consider Should yield a reasonable result, and we will use this ap-

averages over the direction of the source. This average @rox;_matlor; n tha:]“tm't o_nl;;.hW3 a\gelrage over the tehlgen-
denoted by angular brackets ). unctions. For each term in the double sum in Etd) the

The total energ is trivially conserved in the framework product of scalar products gives the same contribution which
of our model. We have we can take out of the sums. Thus, we find

E=Ey(ta) + Eyft,)=S-S=s-s. (10) Extw= B% exi(wn — o], (15)

Hence, we can always construgf(t,a), onceE,(t,«) has  where we absorbed the contributions from the average over
been calculated. the scalar products into the const&iThe average over the
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eigenvalues is yet to be performed. Luckily, the average inf H, V cose —sing [|w; O cose sing

Eq. (15) is recognized as the Fourier transform of the two- vV H = sin oS ,
level correlation functiori2,3]. This yields, on the unfolded 2 ¢ 4
scale, (21)

which implies that the time evolution can be written in the
same form with eigenvalues exp4t) and expiw,t). For the
integration measure one has

0 w,|[-sing cose

e5(7,\) = B[ 8(7/27) + Ky(7/27,\) ], (16)

where the functiorK,(7,\) is referred to as the two-level
form factor. The termd(7) is due to the diagonal contribu- dH,dH,dV = %|w1_ w,|dw,dw,de. (22
tions in the double sum of Eq15). We notice that the con- _ _ o )
ventions used here require a rescaling of time with a factor of "€ sgurce in this X2 model is simply given byS
2. The expression(16) is an estimate for the energy —(1,0". Thus, collecting everything, we find, with E(9),
go(7,\), exclusively in terms of the Fourier-transformed

/ +o0 +o0 2m
two-level spectral correlation function for the transition from  E,(t,a) = \"2_2 dw, f dw,| w1 — w, f de
two GOE's to one GOE. Unfortunately, the two-level form Amyma®) —o 0
factor is not known analytically for all values af The result (014 )% (01— ©,)2
for one GOE, corresponding #o— o, reads 2] xexp - —+ > 2 1 > 2 (co§ 2¢

27—-7In(27+1) for0O<7=<1, sir? 2 01— @
Ky(7,00) = 27+1 (17 " a? (p>]8in2 2¢ sir? %t- 23
’ -7in 1 for r=1.

We introducex=(w;+w,)/\2 and y=(w,—w,)/\2 as new

We notice that the function,(t,») has the limit properties integration variables, perform theand ¢ integrals, and ar-

rive at
£5(0,0) =0, _ o %
i Ea(t,a) = 2w+l afo dyyexd-y*(1 +a?)]
fim e2lme) =B. (18 X[Ig(y2(L - a?) ~ 1 (yA(L - a®))] cos Zayt.

The second property will be used to fix the scale in compari- (24)
son with the results of Ref23]. The estimatg16) should Here, |, and | denote the modified Bessel functions of ze-

apply to large coupling—i.e., to parameter values 1. roth and first order, respectively.
Formula(24) is the final result in the framework of our
C. Two-by-two model 2Xx2 model. In Ref.[23], solutions for two-state models

_ _ N _ ~ based on Eq(1) with different statistical assumptions were
Quite often, one obtains surprisingly good information given. Although the general behavior is similar to oux 2

about an RMT model by restricting it to the smallest possibleRMT result (24), the analytical forms of these solutions in
matrix dimension such that the nontrivial specific characterRef. [23] are different.

istics of the model are still present. This is successful in the For obvious reasons, the unfolding of formuiad) is
case of the nearest-neighbor spacing distribution for theneaningless. Nevertheless, experience with22model for
Gaussian orthogonal, unitary, and sympletic ensembleghe spacing distribution tells that meaningful statements can
(GOE, GUE, and GSE, respectivgly3-5|, but also for pe achieved if the transition parameter—i.e., the coupling
crossover transitioni5]. Here, we proceed analogously. We strengtha in our case—is interpreted properly. Here, we can
obtain a 2<2 RMT model by settindN=1 in Eq.(3). Itturns  do that in the following manner. For large timeshe func-

out convenient to absorb the parameteiinto the matrix  tion E,(t, ) becomes constant, because it reaches its satura-

elementV such that tion limit. The latter will depend omr. Thus, comparing the
saturation limit for the 22 model with that of the R
_|H Vv X 2N RMT simulation or with those of the experiment and
H= (19 : . L
V H, the numerical calculations N1 and N2 allows one, in prin-

ciple, to interpreta on the unfolded scale. The saturation
and to readjust the probability density functiBH) for the  limit is easily obtained from Eq(24). Due to the Riemann-

ensemble average accordingly: Lebesgue lemm§26], we have
V2 % lim Ey(t,a) = ——— (25)
P(H):—’,‘_2 exp(— HE—HE—Z—Z). (20 e 2 = 2a+1)’
TNTTXX o

because the cosine function in the integrand oscillates so
As before, the GOE is recovered far=1. We introduce rapidly for larget, that the integral gives zero in the limit
eigenvalue and angle coordinates t— oo,
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We notice that there is no equipartition of the energies for 0.8 "

t—oo ata=1. This may seem a bit unexpected, becdtss 0.6 ; 7 VI
a 2X2 GOE matrix for that parameter value. It simply re- -

flects the need to properly interpret the parameters, as just "'\JN 0.4

discussed. We study a two-state system and compare the w

probability for a transition between the two states with the 0.2

probability of staying in one state. There is no reason why 0

these should be equal. In tiNe— o limit, however, we ex- 0 5 10
pect equipartition for the full GOE. As the coupling param- time x 10"

eter has to be measured on the scale of the local mean level
spacing, the limitN— o corresponds to the limitx— o in
the 2X 2 version, and in that limit the right-hand side of Eq.
(25) tends to 1/2 and therefore to equipartition.

FIG. 2. Energy ratioE,/E; versus(dimensionlesstime. Data
from N1 of Ref.[23], bin 16, plotted as a dashed line. The result
from Eq. (16) for A—x, B set by property 2 of Eq(18) and a
rescaling of time to make the two curves fit for early times, is
) ) ) plotted as a solid line.

D. Numerical simulations

The numerical simulations of the RMT model are per- E. Chaotically coupled regular systems
formed as in Refd.7,13]. The unfolding of the results, how- In the RMT model defined by Eq3) and in its subse-

ever, is not done in the standard way. To compare with the Lent analvsis. we alwavs drew the matriebsi=1 2 from
numerical calculations of Weaver and Lobkis, it is more con—?tWO inde )éndér)tGOE'sy implving that eri;dél {he o
venient to first unfold the level densities and then “refold” P » IMplying

the spectra of our model with the level densities of R28). rooms individually as chaotic systems—before the coupling

Thereby we ensure that the mean-level densities of the RMﬁrse C&gﬁ'ie;?ghgnbee]%?g ?rllseo ?rzu[:noi t?:é trllr? m’;’t rgssrgs t%r:
model acquire a form given by the Weyl formula for the 9 Y y pied. '

billiardlike system of Ref[23]. The appropriate Wey! for- matricest;, i=1,2,would be drawn from Poisson ensembles

mula for the modal density in a square membrane with Di_[3]. We also did such numerical simulations. The results are

. o qualitatively the same if the coupling—i.e., the matrix
richlet boundary conditions rea@83] V—introduces enough chaos. The main effect is an adjust-

OA L ment of the scales. What matters for the qualitative behavior
(smooth — . ..
p Q)= 2mc2  4c’ (26) is the chaoticity of the total system.

depending on the frequendy. Here, A is the area of the
membrane and is the side length of one room. Moreover, V. COMNPSGIIESR?CN A?g:éﬁfiﬁgﬁé\” AND
is the wave velocity and is chosen as unity here. Using twice

the area of a roonfA=2x198") and a value of. which We now compare the results of our RMT model with
takes the roughness of the boundaries into accurt2  those of Ref[23]. The quantity studied in Ref23] is mostly
X 3% 199, we aquire an expression for the level density ofthe fraction of energy in room 2, d&,(t)/E. In our figures,
the entire system. A comparison with the Weyl formula ofwe plot E,(t)/E;(t) instead. We first consider the estimate,
Ref. [27] shows that the terms from the extra edges intro-Eq. (17), involving the GOE form factor and the resii6)
duced to model the disorder cancel. Hence, we use the fobf the 2x2 RMT model and compare with the numerical
mula for a square membrane, which is precisely B§).  calculations N1 and N2. As formuld6) was derived under
This Weyl formula is employed to refold our RMT model for the assumption of strong coupling on the scale of the local
both numerical calculations N1 and N2. In the latter case, thénean-level spacing, it should apply to the high-frequency
system is not really a billiard, due to the springs used for thebins of N1. Anticipating the later extraction of the coupling
coupling. Nevertheless, the Weyl formula should be a googarameter, we already now mention that ind&eel1 in that
approximation to the real level density. bin. In Fig. 2 we compare E¢16) with data from bin 16the

For every simulation, we generate random matrices ohighest frequency bjrof N1. A good description is obtained,
dimension A X2N=100x100, unfold, refold, calculate although no equipartition is reached. This implies that the
E,(t,@), and average over the results of 800 such simulaeffective couplingh is large, but not very large. We recall
tions. As the function&,(t, ) are not measured on the un- that formally A —« corresponds to the strongest coupling
folded scale, but on that of the Weyl formula, we do nota=1—i.e., to one single system. Expansion of the form fac-
introduce the notatios,(7,\) in the present context. More- tor for short timesr reveals a linear short-time dependence
over, we notice that the numerical calculations N1 and N2of the ensemble-averaged energy,\). This is in agree-
depend on the mean frequen@Qyin the bin under consider- ment with the analytical discussion of RE23].
ation. Accordingly, we arrive at a two-parameter family of ~ We turn to the 2<2 RMT model and compare to bins 2,
time-dependent curveB,(t,«,{)). We now associate each 3, and 4 of N2. The values of the coupling parameteare
bin in the numerical calculation performed by Weaver anddetermined from Eq25) and given in Table |, together with
Lobkis with the corresponding frequen€y. This leaves us the E,/E saturation values of N2. The>X2 RMT model
with a one-parameter family of time-dependent curvescurves and data from N2 are shown in Figéa)3and 3b),
Eou(t, @), u=1,...,16, for each bin labeled ky. respectively. As expected, smaller valuesaoforrespond to
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TABLE |. Coupling parameterst for the 2x2 model used in 0.1 .
Fig. 3(@). The asymptotic saturatids,/ E values for N2 in bins 2, 3, S T
and 4 are taken from Ref23]. The corresponding coupling param- ;- JfT e
eters are calculated from E(R5). o 008 // T e
y
Bin E,/E (asymptotig¢ a 0 /
0 5 10 5 10
2 0.35 2.33 tme  x10° time  x10°
3 0.2 0.67 (@) Bin 2. (b) Bin 5.
4 0.14 0.39
AN Sy L1,

0.6 0.6

" —\‘i”—‘\\”-‘l/\v/ul/«,_
. o . o y NI
a higher degree of localization—i.e., to a stronger deviation w04 / L 04

from equipartition. The general behavior of the results from
the 2x2 model stays the same for large valuesaofWe
notice that the time scale is different, because the data fron
N2 were not unfolded. The similarity shown in Fig. 3 be-
tween the <2 RMT model and the Weaver-Lobkis results
[23] is remarkable. This parallels the success a2 RMT
models for the spacing distributions.

The RMT simulations yield a one-parameter family of
curves for each bin, to be compared with the numerical cal-
culations N1 and N2. We use visual inspection to determine,
for each bin, which curve fits best to the numerical calcula-
tions N1 and N2. Typical results for some of the bins are
shown in Figs. 4 and 5. In the low-frequency bins of N2
there is a discrepancy; see Figap The RMT simulation
does not overshoot its saturation value as clearly as the data
of Ref. [23]. This very large overshoot within a short-time

02}/ o
% 5 10 K ; ;
time  x10* tme  x10*
() Bin 9. (d) Bin 13.
N
0.6 1
L.04f /
L
0.2
0
0 5 10
tme  x10°
(¢) Bin 16.

interval is, however, borne out in thex22 RMT model; see

Fig. 3. By the visual fit we determine the coupling parametehymerical simulations using the RMT model as solid lines. We
«. We measure it on the scale of the local mean-level spagotice the differen,/E; scale in plot(a).

_
F

10 20 30 40
time

(a) 2x 2 RMT model, fitted to N2 bins
2,3,4 from top to bottom.

Ey/Eq
o o o o
N WD o o]

1
0.8

w06

~

o
w 0.4

02 /\"”/»m

O0 0.5 1 1.5 2
time

(b) Data from N2, bins 2,3,4
from top to bottom.

FIG. 3. Comparison between thex2 RMT model and the
low-frequency bins of N2 of Ref.23]. The energy ratid,/E; is

plotted versugdimensionlesstime.

FIG. 4. Energy ratioE,/E; versus(dimensionlesstime. Data
from N1 of Ref.[23] plotted as dashed lines and from refolded

ing. In Table II, we list the in this manner obtained coupling
parametei for N1 and N2 for the bins under consideration.
The \ values extracted for N1 go up with higher bins, be-
cause the saturation value comes closer to equipartition. This
effect is also visible for N2, but not so pronounced, because
the saturation value does not change much for higher bins.

We find good qualitative agreement between the RMT
simulation and N1 and N2. Importantly, fluctuations between
different random matrices are quite large, and the RMT
curves presented here are averageg&pbver 800 random
matrices. Among those some show very much closer similar-
ity to the curves of Weaver and LobKig3], and we believe
that most of the discrepancy in the low-frequency bins of N1
are due to fluctuations resulting from the specific choice of
the boundary and perhaps other parameters in the numerical
calculations of Ref{23]. The reason for this interpretation of
the discrepancy is the peculiar form of the fluctuations in bin
2 of N1; see Fig. @). Since these lower bins have a lower
level density, they should also be more sensitive to this kind
of fluctuations. In the intermediate-frequency bins, we find
that the numerical calculations N1 and N2 are well repro-
duced by the RMT model. In the figures for the high-
frequency bin, Figs. @) and Fe), the RMT results are seen
to deviate downwards for large times. It is conceivable that
the short-time behavior strongly depends on the specific re-
alization of the coupling while the long-time behavior is uni-
versal.
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upwards trend of the energy ratio towards the end of the time
window studied. According to Reff23] this means that, first,
the expected asymptotic value &%/E; is reached in the
middle of the time window studied and that, second, there is
another unknown effect acting on longer time scales adding
to the energy spread which is likely to be due to the coupling
of the setup to the environment. Thus, we do not attempt to
extract a quantitative estimate of the coupling paramater
for the experiment.

V. CONCLUSION

We have set up and analyzed an RMT model to describe
the time behavior of coupled reverberation rooms. This sys-
tem shows localization effects under certain conditions.
Within our RMT model, we gave an estimate of the strong-
5 coupling behavior which involved the two-level GOE form

factor. Moreover, we studied theX22 version of our RMT
model analytically for arbitrary coupling strength and per-
0.2 o formed numerical simulations for theN2< 2N version.
o From the comparison with the work of Weaver and
~ Lobkis, we conclude that the RMT model yields a good
« 0-1 qualitative description. Moreover, we find an interpretation
of the localization effect by relating it to the universal fea-
tures of RMT models for crossover transitions.

o

time x 10

E_/E

0

0 1 2 Formally similar RMT models have been studied in con-
time  x10° nection with symmetry breaking. Then, the parameter
(e) Bin 16. measures the degree of symmetry breaking. This is so for

isospin breaking in nuclear physi¢6,7,11,13, symmetry
breaking in molecular physid¢8], and symmetry breaking in
resonating quartz crystal®]. The experiment that comes
closest to the present situation is the study of spectral corre-
lations in coupled microwave billiard4.0]. In this work and
hein the experiment of Weaver and LobKi&3], an excitation

The result from the experiment is shown in Fig. 1. The. itially i A Id stav th f I it th
qualitative features are well described by the RMT model. igniatly in system one would stay there for all imes 1t the
gouplmg is zero. This is formally analogous to a conserved

FIG. 5. Energy ratioE,/E; versus(dimensionlesstime. Data
from N2 of Ref.[23] plotted as dashed lines and from refolded
numerical simulations using the RMT model as solid lines. We
notice the differenE,/E; scale in plot(a).

can be seen that the system localizes in the low-frequenc
uantum number.

bins, but does not do so in the high-requency bins. In othe In the RMT del th " ing the si f

words, the system approaches equipartition of the energ A h the i mho €l the patlramte erl meas;mng N eth5|ze Ot

The localization behavior depends on the strength of the cou- € connection has a most natural counterpart. the root-
ean-square matrix element due to the coupling measured

pling measured on the scale of the local mean-level spacing, h le of the local level ina. Thus. th

and the mean-level density is significantly higher in the high- n the scae}o k('a O(;ﬁ m(]a(fan-t_eve ds_pacmg. | us, er(ﬁ are

frequency bins. It seems that the saturation value has not yé‘f'o ways of making the efiective, dimensioniess coupliing
parameten small and to thereby introduce localization: ei-

been reached on the time scale visible in Fig. 1. A closeth th inal i ter which al h
inspection shows an initial behavior similar to the one in the er the oniginal coupling parametar which always has a

results from our numerical RMT calculations and a slightl(zgins'on is small or the mean-level spacibgis made
TABLE II. Coupling constanta. on the unfolded scale resuling It might be surprising that no equipartition of the energy

from the RMT simulation, determined for some bins of the numeri-1S S€en for all coupling Stren_gthsl even if one waits very long.

cal calculations N1 and N2 with mean frequenciéssee Figs. 4 This would be the expectation if one compares the system

and 5. with two water basins coupled by a channel. Suppose that

initially the two basins are empty and the channel is closed

Bin Q \ for N1 \ for N2 by a gate. Now one of the basins is filled with water and the
gate is opened dat0. Obviously, the water levels in the two

2 0.1562 0.4750 3.2316 basins will be equal after sufficiently long time. The speed

5 0.4686 2.0222 0.7754 with which this equipartition is reached simply depends on

9 0.8851 3.0586 0.7502 the cross section of the channel.

13 1.3016 3.9093 0.8441 In the present case of the two coupled acoustic rooms the

16 1.6140 4.2427 0.8899 situation is different, because the wave character of the ex-

citations has to be taken into account. Thus, the crucial pa-
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rameter entering is the size of the coupling connection—i.ewe mean, most importantly, the scales set by the shortest
its geometrical width—compared to a typical wavelength.periodic orbits.

The first waves after the excitation which come from system It is worthwhile to realize that the chaoticity of the indi-

1 into system 2 enter a silent territory and cause the firsyidual subsystems before the coupling is not crucial, if the
excitations there. The next waves coming from system 1¢oupling itself introduces enough chaos. We tested numeri-
however, encounter these first excitations in system 2 an@@lly that the behavior of the corresponding model for two
interfere with them constructively or destructively. This pro- "égular subsystems coupled chaotically shows the same

cess continues and, of course, after being excited in Systegpalitative behavior. The saturation value is reached slightly

2, waves also travel back into system 1. For smaller timeg@Stél, which simply means that time is rescaled. Finally, we
ention that our model is not restricted to elastomechanics.

this complicated dynamics certainly depends strongly on th : d al Vot led " ot 4 ofh
realization of the coupling. This is clearly so in the numerical would aiso apply o coupled quantum dots and other
coupled systems.

calculation of Ref[23]. Nevertheless, the long-time behav-
ior,_ in particulgr the sa}turation limit, shows universal charac? ACKNOWLEDGMENTS

teristics, consistent with general features of quantum chaotic
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