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We set up and analyze a random matrix model to study energy localization and its time behavior in two
chaotically coupled systems. This investigation is prompted by a recent experimental and theoretical study of
Weaver and Lobkis on coupled elastomechanical systems. Our random matrix model properly describes the
main features of the findings by Weaver and Lobkis. Due to its general character, our model is also applicable
to similar systems in other areas of physics—for example, to chaotically coupled quantum dots.
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I. INTRODUCTION

The statistical features of coupled systems have attracted
considerable interest in many branches of physics. Random
matrix theorysRMTd has been successfully used in many of
those investigations. RMT was founded by Wignerf1g. It is a
schematic modelf2g in which the Hamiltonian, or, more gen-
erally, the wave operator of the system, is replaced by a
random matrix. The necessary prerequisite is that the system
be sufficiently “complex,” implying that the matrix elements
of the Hamiltonian, or wave operator, calculated in an arbi-
trary basis, behave like random numbers. It has been shown
that the spectral fluctuations in numerous different systems,
if measured on the scale of the local mean-level spacing, are
very well modeled by RMT; see the reviews in Refs.f3–5g.
Due to the connection with chaos, one frequently refers to
those systems as quantum chaotic which show correlations
of RMT type. Similarly, systems are often referred to as
regular if they lack spectral correlations.

We consider two coupled systems. We assume that either
the two systems are chaotic before they are coupled or that
the coupling itself introduces chaoticity if the separate sys-
tems are regular. This scenario is equivalent to the breaking
of symmetries, if only two values of the quantum number
belonging to that symmetry are taken into account. The sta-
tistical features crucially depend on the strength of the cou-
pling measured on the scale of the local mean-level spacing.
Many studies have been devoted to this issue of chaotically
coupled systems or, equivalently, to symmetry breaking. We
mention isospin breaking in nuclear physicsf6,7g, symmetry
breaking in molecular physicsf8g, symmetry breaking in
resonating quartz crystalsf9g, and coupled microwave bil-
liards f10g. While these studies addressed the spectral corre-
lation, several investigations in nuclear physicsf11–14g fo-
cused on the statistics of the wave functions and related
observables in the presence of symmetry breaking or similar
effects. In all these cases, RMT approaches in the spirit of
the Rosenzweig-Porter modelf15g were successful.

Sometimes observables in the time domain such as spec-
tral form factors are more appropriate than the eigenenergy

correlations functionsf2–5g. This is so, for example, in the
case of the presently much discussed fidelity; see Refs.
f16–19g and references therein. Another example is the study
of the energy spread in chaotic systemsf20,21g. In the con-
text of coupled systems, the time evolution of wave packets
was investigated in Ref.f22g.

In the present contribution, we study energy localization
in two coupled systems in the time domain. This problem
was addressed in a recent work by Weaver and Lobkisf23g
who measured the time dependence of the wave intensity
distribution in two coupled reverberation rooms. To this end,
these authors recorded the time response to an elastic exci-
tation of two coupled aluminum cubes. Moreover, they in-
vestigated the same problem theoretically and they numeri-
cally calculated the response in coupled two-dimensional
membranes. In our study, we set up and analyze an RMT
model, based on the approaches in Refs.f15,7,13g. Its gen-
eral character makes our model useful for similar problems
in different physics contexts. In particular, we expect that our
RMT approach also applies to coupled quantum dots.

The article is organized as follows. In Sec. II we sketch
the work of Weaver and Lobkisf23g. In Sec. III we set up the
RMT model and analyze it analytically and numerically. We
compare our results to those of Weaver and Lobkis in Sec.
IV. Discussion and conclusions are given in Sec. V.

II. EXPERIMENT AND NUMERICAL CALCULATIONS

As we aim at a comparison with their findings, we present
the work of Weaver and Lobkisf23g in some detail. Thereby,
we also introduce the notation and conventions. The system
studied experimentally consists of two aluminum cubes
coupled by a solid connection, manufactured out of a solid
aluminum block. The corners of the cubes were removed to
desymmetrize the structure. This was done to ensure “cha-
otic” motion. Elastomechanical wave modes were excited in
one room, and the response was measured in the other room.
In this way, 16 different curves of energy intensity versus
time were recorded, each in a small region around a different
frequency. The results show that the energy does not always
spread equally over the two rooms. If the coupling is weak,
then the wave intensity is higher in the room where the initial
excitation was performed than in the other room, regardless
of how long one waits. Hence, the energy ratio never ap-
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proaches unity. This deviation from the equipartition of the
energy in the two rooms is referred to as energy localization.
The resulting data are shown in Fig. 1, and as expected there
is localization in the bins of larger mean-level spacing, but
not in the bins of small mean-level spacing. We will discuss
these results further in Sec. IV.

Two numerical studies were performed on membranes
with rough boundariesf23g. The dynamics of the system was
in both cases governed by discretized wave equations in each
of the rooms, and the coupling was realized in different ways
in the two numerical calculations, to which we refer as N1
and N2 in the sequel. In the first one, N1, the connection had
the form of a window between the two membranes similar to
the situation in the experimental setup. In the second numeri-
cal calculation, N2, the rooms were separated, but springs
were attached to a few different sites in rooms 1 and 2,
thereby coupling those sites. In N1 and N2, a nonvanishing
initial condition was given to one site in one of the rooms,
and the response was calculated at different sites in the other
room. The resulting time series were cosine-bell time win-
dowed to focus on a specific instant in time. Then, the time
series were Fourier transformed and integrated over a small
region in frequency to accumulate data around a certain fre-
quency. As in the experiment, 16 different curves of intensity
versus time were obtained around different frequencies. At
different frequencies, the systems have different effective
couplings. Therefore, one expectsf23g the time behavior of
the different curves to differ in the degree of localization, as
well as in the way in which this asymptotic saturation value
is reached. Due to the differences in the coupling mecha-
nism, there will also be differences between the results of N1
and N2.

Moreover, Weaver and Lobkis performed an analytical
model study. The elastic wave equation for the state of the
systemUstd, say, is of second order in time. To focus on the
response in a narrow interval around a certain frequencyV,
the ansatzUstd=ustdexps−iVtd is made with the assumption
that ustd varies slowly with time. This leads to a first-order
differential equation in time forustd which has the form

− i
]

]t
ustd =

C + V2

2V
ustd, s1d

whereC is the wave operator of the original second-order
equation. The energiesE1std and E2std in rooms 1 and 2 at

time t are defined as the total probability density of finding
the system stateustd in one of the statescik, i =1,2, which
are good eigenstates in roomi:

Eistd = o
k

uustd · ciku2. s2d

Strictly speaking,Eistd is no energy. Nevertheless, we find
this terminology introduced in Ref.f23g appropriate and use
it as well, becauseEistd measures the degree of motion in
room i. If no energy dissipates into the surrounding environ-
ment, the total energyE=E1std+E2std is conserved—i.e., in-
dependent of time. In the sequel, it is always assumed that
the system is excited in room 1 and the energy is measured in
room 2. Analytical solutions for two coupled states are pre-
sented in Ref.f23g by employing different statistical assump-
tions.

III. RANDOM MATRIX MODEL

We set up the model in Sec. III A. The connection to the
two-level form factor is established in Sec. III B, and a 2
32 version of the model is evaluated in Sec. III C. We dis-
cuss numerical simulations of the RMT model in Sec. III D.
Finally, we comment on chaotically coupled regular systems
in Sec. III E.

A. Setup of the model

Spectral correlations in elastomechanics have been shown
to be well described by RMTf24g. This is also true in the
case of symmetry breakingf9g, which is of direct relevance
for the present study. Thus, RMT is also likely to be capable
of modeling the time behavior of elastomechanical systems.
As the first-order Eq.s1d has proved to be a good approxi-
mation to the experimental situation, we also base our model
on this Schrödinger type of equation. Thus, it is more natural
to replacesC+V2d /2V by the random matrixH than to re-
placeC itself. It turns out that this is indeed the best choice.

The appropriate RMT model is an extension of the one
employed in Refs.f7,13g. The random matrixH modeling
the operatorsC+V2d /2V reads

H = FH1 0

0 H2
G + aF 0 V

V† 0
G . s3d

The two matricesHi, i =1,2, model the uncoupled rooms 1
and 2. They are real symmetric and have random entries. We
draw them fromstwo independentd Gaussian orthogonal en-
semblessGOE’sd. As the rooms in the experiments and the
numerical calculations N1 and N2 were of the same size, the
level densities were also the same. This can be adjusted in
the RMT model by giving the matricesHi the same statistical
weights and the same dimensionN, such that 2N is the total
dimension ofH. The matrixV also has random entries. The
strength of the coupling is measured by the dimensionless
parametera. It is sufficient to always assumeaù0. The
statistical weight ofV is chosen such that the totalH is in the
GOE of 2N32N matrices fora=1.

We write the eigenvalue equation for the total Hamil-
tonianH in the form

FIG. 1. Results from the experiment by Weaver and Lobkis. The
energy ratio between the different rooms is plotted versus timesin
msd. We note the different scales on they axes. Reprinted from
Ref. f23g.
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HCn = vnCn, n = 1, . . . ,2N. s4d

The eigenvaluesvn and eigenvectorsCn are functions of the
coupling parametera. It is convenient to introduce the nota-
tion

Cn = FC1n

C2n
G , s5d

whereCin, i =1,2, is theprojection ofCn onto the subspace
i. We emphasize thatCin, i =1,2, arefunctions of the cou-
pling parametera. The eigenvalue equations for the Hamil-
toniansHi are written as

H1c1n = v1nc1n, n = 1, . . . ,N,

H2c2n = v2nc2n, n = 1, . . . ,N, s6d

where the eigenvaluesvin and eigenvectorscin are not func-
tions of a. This difference betweenCin andcin is an imme-
diate consequence of the fact thatH depends ona, while H1

and H2 do not. We will also use the notationĉ2n=s0,c2nd†

for the corresponding 2N-dimensional vector with zeros in
the firstN components.

At time t=0, the system is excited in room one such that
the state of the total system can be written as

S= Fs

0
G , s7d

wheres in room one is not specified in detail. We refer toS
as to the source. The time evolution of the source is then
simply

ustd = TstdS, whereTstd = expsiHtd s8d

is the time evolution operator. Using the eigenvectorsĉ2n,
the energy in room 2 is thus given by

E2st,ad = o
n=1

N

uustd · ĉ2nu2 = o
n=1

N

„TstdS…†ĉ2nĉ2n
†
„TstdS…

= S†T†stdF0 0

0 1N
GTstdS. s9d

The block matrix only contains the unit matrix 1N for room
2. We writeE2st ,ad instead ofE2std to emphasize the depen-
dence on the coupling parametera in the RMT model. We
will study averagesE2st ,ad over the ensemble of matrices
introduced in Eq.s3d. Occasionally, we will also consider
averages over the direction of the source. This average is
denoted by angular bracketsk¯l.

The total energyE is trivially conserved in the framework
of our model. We have

E = E1st,ad + E2st,ad = S·S= s ·s. s10d

Hence, we can always constructE1st ,ad, onceE2st ,ad has
been calculated.

As all correlations have to be measuredf2–5g on the local
scale of the mean-level spacingD, we introduce an unfolded
time t=Dt. This is also the scale on whicha acts; we intro-
duce the unfolded coupling parameterl=a /D. The energy
on the unfolded scale is then given by

«2st,ld = lim
N→`

E2st/D,Dld. s11d

Small values ofa have a large effect on the correlation func-
tions if the mean-level spacingD is small as well.

B. Relation to the two-level form factor

We now derive an estimate for the time evolution of
E2st ,ad which should apply to strong-coupling strength—
i.e., to a parametera which is large on the unfolded scale of
the mean-level spacing. If one assumes that the sourceS
comprises excitations into all statesc1n, one may average
over the direction of the source. We find, from Eq.s9d,

kE2lst,ad = Btrs11dT†stdF0 0

0 1N
GTstd, s12d

where trs11d is the trace over thes11d sector of the whole
matrix—i.e., over the upper left block. The constantB results
from the average. Expanding the time evolution operator in
terms of the eigenvectors,

Tstd = o
n=1

2N

Cn expsivntdCn
†, s13d

we arrive after a short calculation at

kE2lst,ad = Bo
n,m

sC1m · C1ndsC2n · C2mdexpfisvn − vmdtg.

s14d

The vectorsC1n andC2n are, according to Eq.s5d, the pro-
jections of the full eigenvectorCn onto the subspaces corre-
sponding to the two rooms. They depend on the coupling
parametera. These vectors coincide with the eigenvectors
for the matricesH1 and H2 only for a=0. Hence, they are
only orthogonal in this special case. For all valuesa.0, the
scalar productsC1m·C1n andC2n·C2m are neither zero nor
given bydnm. The ensemble average over the eigenenergies
vn and over the eigenfunctionsCn decouples only for the
parameter valuesa=0 anda=1—i.e., if the system either
falls into two GOE’s or is represented by one GOE. We now
estimate the ensemble average of the energykE2lst ,ad by
making the approximation that the averages over eigenener-
gies and eigenfunctions decouple. For strong coupling this
should yield a reasonable result, and we will use this ap-
proximation in that limit only. We average over the eigen-
functions. For each term in the double sum in Eq.s14d the
product of scalar products gives the same contribution which
we can take out of the sums. Thus, we find

kE2lst,ad = Bo
n,m

expfisvn − vmdtg, s15d

where we absorbed the contributions from the average over
the scalar products into the constantB. The average over the
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eigenvalues is yet to be performed. Luckily, the average in
Eq. s15d is recognized as the Fourier transform of the two-
level correlation functionf2,3g. This yields, on the unfolded
scale,

«2st,ld = Bfdst/2pd + K2st/2p,ldg, s16d

where the functionK2st ,ld is referred to as the two-level
form factor. The termdstd is due to the diagonal contribu-
tions in the double sum of Eq.s15d. We notice that the con-
ventions used here require a rescaling of time with a factor of
2p. The expressions16d is an estimate for the energy
«2st ,ld, exclusively in terms of the Fourier-transformed
two-level spectral correlation function for the transition from
two GOE’s to one GOE. Unfortunately, the two-level form
factor is not known analytically for all values ofl. The result
for one GOE, corresponding tol→`, readsf2g

K2st,`d = 52t − t lns2t + 1d for 0 , t ø 1,

2 − t ln
2t + 1

2t − 1
for t ù 1. 6 s17d

We notice that the function«2st ,`d has the limit properties

«2s0,`d = 0,

lim
t→`

«2st,`d = B. s18d

The second property will be used to fix the scale in compari-
son with the results of Ref.f23g. The estimates16d should
apply to large coupling—i.e., to parameter valuesl@1.

C. Two-by-two model

Quite often, one obtains surprisingly good information
about an RMT model by restricting it to the smallest possible
matrix dimension such that the nontrivial specific character-
istics of the model are still present. This is successful in the
case of the nearest-neighbor spacing distribution for the
Gaussian orthogonal, unitary, and sympletic ensembles
sGOE, GUE, and GSE, respectivelyd f3–5g, but also for
crossover transitionsf25g. Here, we proceed analogously. We
obtain a 232 RMT model by settingN=1 in Eq.s3d. It turns
out convenient to absorb the parametera into the matrix
elementV such that

H = FH1 V

V H2
G s19d

and to readjust the probability density functionPsHd for the
ensemble average accordingly:

PsHd =
Î2

pÎpa2
expS− H1

2 − H2
2 − 2

V2

a2D . s20d

As before, the GOE is recovered fora=1. We introduce
eigenvalue and angle coordinates

FH1 V

V H2
G = Fcosw − sinw

sinw cosw
GFv1 0

0 v2
GF cosw sinw

− sinw cosw
G ,

s21d

which implies that the time evolution can be written in the
same form with eigenvalues expsiv1td and expsiv2td. For the
integration measure one has

dH1dH2dV= 1
4uv1 − v2udv1dv2dw. s22d

The source in this 232 model is simply given byS
=s1,0d†. Thus, collecting everything, we find, with Eq.s9d,

E2st,ad =
Î2

4pÎpa2E
−`

+`

dv1E
−`

+`

dv2uv1 − v2uE
0

2p

dw

3expF−
sv1 + v2d2

2
−

sv1 − v2d2

2
Scos2 2w

+
sin2 2w

a2 DGsin2 2w sin2 v1 − v2

2
t. s23d

We introducex=sv1+v2d /Î2 and y=sv1−v2d /Î2 as new
integration variables, perform thex andw integrals, and ar-
rive at

E2st,ad =
a

2sa + 1d
− aE

0

`

dyyexpf− y2s1 + a2dg

3fI0„y
2s1 − a2d… − I1„y

2s1 − a2d…g cos 2ayt.

s24d

Here, I0 and I1 denote the modified Bessel functions of ze-
roth and first order, respectively.

Formula s24d is the final result in the framework of our
232 model. In Ref.f23g, solutions for two-state models
based on Eq.s1d with different statistical assumptions were
given. Although the general behavior is similar to our 232
RMT result s24d, the analytical forms of these solutions in
Ref. f23g are different.

For obvious reasons, the unfolding of formulas24d is
meaningless. Nevertheless, experience with 232 model for
the spacing distribution tells that meaningful statements can
be achieved if the transition parameter—i.e., the coupling
strengtha in our case—is interpreted properly. Here, we can
do that in the following manner. For large timest, the func-
tion E2st ,ad becomes constant, because it reaches its satura-
tion limit. The latter will depend ona. Thus, comparing the
saturation limit for the 232 model with that of the 2N
32N RMT simulation or with those of the experiment and
the numerical calculations N1 and N2 allows one, in prin-
ciple, to interpreta on the unfolded scale. The saturation
limit is easily obtained from Eq.s24d. Due to the Riemann-
Lebesgue lemmaf26g, we have

lim
t→`

E2st,ad =
a

2sa + 1d
, s25d

because the cosine function in the integrand oscillates so
rapidly for larget, that the integral gives zero in the limit
t→`.
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We notice that there is no equipartition of the energies for
t→` at a=1. This may seem a bit unexpected, becauseH is
a 232 GOE matrix for that parameter value. It simply re-
flects the need to properly interpret the parameters, as just
discussed. We study a two-state system and compare the
probability for a transition between the two states with the
probability of staying in one state. There is no reason why
these should be equal. In theN→` limit, however, we ex-
pect equipartition for the full GOE. As the coupling param-
eter has to be measured on the scale of the local mean level
spacing, the limitN→` corresponds to the limita→` in
the 232 version, and in that limit the right-hand side of Eq.
s25d tends to 1/2 and therefore to equipartition.

D. Numerical simulations

The numerical simulations of the RMT model are per-
formed as in Refs.f7,13g. The unfolding of the results, how-
ever, is not done in the standard way. To compare with the
numerical calculations of Weaver and Lobkis, it is more con-
venient to first unfold the level densities and then “refold”
the spectra of our model with the level densities of Ref.f23g.
Thereby we ensure that the mean-level densities of the RMT
model acquire a form given by the Weyl formula for the
billiardlike system of Ref.f23g. The appropriate Weyl for-
mula for the modal density in a square membrane with Di-
richlet boundary conditions readsf23g

rssmoothdsVd =
VA

2pc2 −
L

4c
, s26d

depending on the frequencyV. Here, A is the area of the
membrane andL is the side length of one room. Moreover,c
is the wave velocity and is chosen as unity here. Using twice
the area of a roomsA=231982d and a value ofL which
takes the roughness of the boundaries into accountsL=2
333198d, we aquire an expression for the level density of
the entire system. A comparison with the Weyl formula of
Ref. f27g shows that the terms from the extra edges intro-
duced to model the disorder cancel. Hence, we use the for-
mula for a square membrane, which is precisely Eq.s26d.
This Weyl formula is employed to refold our RMT model for
both numerical calculations N1 and N2. In the latter case, the
system is not really a billiard, due to the springs used for the
coupling. Nevertheless, the Weyl formula should be a good
approximation to the real level density.

For every simulation, we generate random matrices of
dimension 2N32N=1003100, unfold, refold, calculate
E2st ,ad, and average over the results of 800 such simula-
tions. As the functionsE2st ,ad are not measured on the un-
folded scale, but on that of the Weyl formula, we do not
introduce the notation«2st ,ld in the present context. More-
over, we notice that the numerical calculations N1 and N2
depend on the mean frequencyV in the bin under consider-
ation. Accordingly, we arrive at a two-parameter family of
time-dependent curvesE2st ,a ,Vd. We now associate each
bin in the numerical calculation performed by Weaver and
Lobkis with the corresponding frequencyV. This leaves us
with a one-parameter family of time-dependent curves
E2mst ,ad, m=1, . . . ,16, for each bin labeled bym.

E. Chaotically coupled regular systems

In the RMT model defined by Eq.s3d and in its subse-
quent analysis, we always drew the matricesHi, i =1,2,from
stwo independentd GOE’s, implying that we model the two
rooms individually as chaotic systems—before the coupling
is considered. One can also assume that the two rooms are
regular systems before they are coupled. In that case, the
matricesHi, i =1,2,would be drawn from Poisson ensembles
f3g. We also did such numerical simulations. The results are
qualitatively the same if the coupling—i.e., the matrix
V—introduces enough chaos. The main effect is an adjust-
ment of the scales. What matters for the qualitative behavior
is the chaoticity of the total system.

IV. COMPARISON WITH EXPERIMENT AND
NUMERICAL CALCULATIONS

We now compare the results of our RMT model with
those of Ref.f23g. The quantity studied in Ref.f23g is mostly
the fraction of energy in room 2, orE2std /E. In our figures,
we plot E2std /E1std instead. We first consider the estimate,
Eq. s17d, involving the GOE form factor and the results16d
of the 232 RMT model and compare with the numerical
calculations N1 and N2. As formulas16d was derived under
the assumption of strong coupling on the scale of the local
mean-level spacing, it should apply to the high-frequency
bins of N1. Anticipating the later extraction of the coupling
parameter, we already now mention that indeedl.1 in that
bin. In Fig. 2 we compare Eq.s16d with data from bin 16sthe
highest frequency bind of N1. A good description is obtained,
although no equipartition is reached. This implies that the
effective couplingl is large, but not very large. We recall
that formally l→` corresponds to the strongest coupling
a=1—i.e., to one single system. Expansion of the form fac-
tor for short timest reveals a linear short-time dependence
of the ensemble-averaged energy«2st ,ld. This is in agree-
ment with the analytical discussion of Ref.f23g.

We turn to the 232 RMT model and compare to bins 2,
3, and 4 of N2. The values of the coupling parametera are
determined from Eq.s25d and given in Table I, together with
the E2/E saturation values of N2. The 232 RMT model
curves and data from N2 are shown in Figs. 3sad and 3sbd,
respectively. As expected, smaller values ofa correspond to

FIG. 2. Energy ratioE2/E1 versussdimensionlessd time. Data
from N1 of Ref. f23g, bin 16, plotted as a dashed line. The result
from Eq. s16d for l→`, B set by property 2 of Eq.s18d and a
rescaling of time to make the two curves fit for early times, is
plotted as a solid line.
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a higher degree of localization—i.e., to a stronger deviation
from equipartition. The general behavior of the results from
the 232 model stays the same for large values ofa. We
notice that the time scale is different, because the data from
N2 were not unfolded. The similarity shown in Fig. 3 be-
tween the 232 RMT model and the Weaver-Lobkis results
f23g is remarkable. This parallels the success of 232 RMT
models for the spacing distributions.

The RMT simulations yield a one-parameter family of
curves for each bin, to be compared with the numerical cal-
culations N1 and N2. We use visual inspection to determine,
for each bin, which curve fits best to the numerical calcula-
tions N1 and N2. Typical results for some of the bins are
shown in Figs. 4 and 5. In the low-frequency bins of N2
there is a discrepancy; see Fig. 5sad. The RMT simulation
does not overshoot its saturation value as clearly as the data
of Ref. f23g. This very large overshoot within a short-time
interval is, however, borne out in the 232 RMT model; see
Fig. 3. By the visual fit we determine the coupling parameter
a. We measure it on the scale of the local mean-level spac-

ing. In Table II, we list the in this manner obtained coupling
parameterl for N1 and N2 for the bins under consideration.
The l values extracted for N1 go up with higher bins, be-
cause the saturation value comes closer to equipartition. This
effect is also visible for N2, but not so pronounced, because
the saturation value does not change much for higher bins.

We find good qualitative agreement between the RMT
simulation and N1 and N2. Importantly, fluctuations between
different random matrices are quite large, and the RMT
curves presented here are averages ofE2 over 800 random
matrices. Among those some show very much closer similar-
ity to the curves of Weaver and Lobkisf23g, and we believe
that most of the discrepancy in the low-frequency bins of N1
are due to fluctuations resulting from the specific choice of
the boundary and perhaps other parameters in the numerical
calculations of Ref.f23g. The reason for this interpretation of
the discrepancy is the peculiar form of the fluctuations in bin
2 of N1; see Fig. 4sad. Since these lower bins have a lower
level density, they should also be more sensitive to this kind
of fluctuations. In the intermediate-frequency bins, we find
that the numerical calculations N1 and N2 are well repro-
duced by the RMT model. In the figures for the high-
frequency bin, Figs. 4sed and 5sed, the RMT results are seen
to deviate downwards for large times. It is conceivable that
the short-time behavior strongly depends on the specific re-
alization of the coupling while the long-time behavior is uni-
versal.

TABLE I. Coupling parametersa for the 232 model used in
Fig. 3sad. The asymptotic saturationE2/E values for N2 in bins 2, 3,
and 4 are taken from Ref.f23g. The corresponding coupling param-
eters are calculated from Eq.s25d.

Bin E2/E sasymptoticd a

2 0.35 2.33

3 0.2 0.67

4 0.14 0.39

FIG. 3. Comparison between the 232 RMT model and the
low-frequency bins of N2 of Ref.f23g. The energy ratioE2/E1 is
plotted versussdimensionlessd time.

FIG. 4. Energy ratioE2/E1 versussdimensionlessd time. Data
from N1 of Ref. f23g plotted as dashed lines and from refolded
numerical simulations using the RMT model as solid lines. We
notice the differentE2/E1 scale in plotsad.
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The result from the experiment is shown in Fig. 1. The
qualitative features are well described by the RMT model. It
can be seen that the system localizes in the low-frequency
bins, but does not do so in the high-requency bins. In other
words, the system approaches equipartition of the energy.
The localization behavior depends on the strength of the cou-
pling measured on the scale of the local mean-level spacing,
and the mean-level density is significantly higher in the high-
frequency bins. It seems that the saturation value has not yet
been reached on the time scale visible in Fig. 1. A closer
inspection shows an initial behavior similar to the one in the
results from our numerical RMT calculations and a slight

upwards trend of the energy ratio towards the end of the time
window studied. According to Ref.f23g this means that, first,
the expected asymptotic value ofE2/E1 is reached in the
middle of the time window studied and that, second, there is
another unknown effect acting on longer time scales adding
to the energy spread which is likely to be due to the coupling
of the setup to the environment. Thus, we do not attempt to
extract a quantitative estimate of the coupling parametera
for the experiment.

V. CONCLUSION

We have set up and analyzed an RMT model to describe
the time behavior of coupled reverberation rooms. This sys-
tem shows localization effects under certain conditions.
Within our RMT model, we gave an estimate of the strong-
coupling behavior which involved the two-level GOE form
factor. Moreover, we studied the 232 version of our RMT
model analytically for arbitrary coupling strength and per-
formed numerical simulations for the 2N32N version.

From the comparison with the work of Weaver and
Lobkis, we conclude that the RMT model yields a good
qualitative description. Moreover, we find an interpretation
of the localization effect by relating it to the universal fea-
tures of RMT models for crossover transitions.

Formally similar RMT models have been studied in con-
nection with symmetry breaking. Then, the parametera
measures the degree of symmetry breaking. This is so for
isospin breaking in nuclear physicsf6,7,11,13g, symmetry
breaking in molecular physicsf8g, and symmetry breaking in
resonating quartz crystalsf9g. The experiment that comes
closest to the present situation is the study of spectral corre-
lations in coupled microwave billiardsf10g. In this work and
in the experiment of Weaver and Lobkisf23g, an excitation
initially in system one would stay there for all times if the
coupling is zero. This is formally analogous to a conserved
quantum number.

In the RMT model the parameter measuring the size of
the connection has a most natural counterpart: the root-
mean-square matrix element due to the coupling measured
on the scale of the local mean-level spacing. Thus, there are
two ways of making the effective, dimensionless coupling
parameterl small and to thereby introduce localization: ei-
ther the original coupling parametera which always has a
dimension is small or the mean-level spacingD is made
large.

It might be surprising that no equipartition of the energy
is seen for all coupling strengths even if one waits very long.
This would be the expectation if one compares the system
with two water basins coupled by a channel. Suppose that
initially the two basins are empty and the channel is closed
by a gate. Now one of the basins is filled with water and the
gate is opened att=0. Obviously, the water levels in the two
basins will be equal after sufficiently long time. The speed
with which this equipartition is reached simply depends on
the cross section of the channel.

In the present case of the two coupled acoustic rooms the
situation is different, because the wave character of the ex-
citations has to be taken into account. Thus, the crucial pa-

FIG. 5. Energy ratioE2/E1 versussdimensionlessd time. Data
from N2 of Ref. f23g plotted as dashed lines and from refolded
numerical simulations using the RMT model as solid lines. We
notice the differentE2/E1 scale in plotsad.

TABLE II. Coupling constantsl on the unfolded scale resulting
from the RMT simulation, determined for some bins of the numeri-
cal calculations N1 and N2 with mean frequenciesV: see Figs. 4
and 5.

Bin V l for N1 l for N2

2 0.1562 0.4750 3.2316

5 0.4686 2.0222 0.7754

9 0.8851 3.0586 0.7502

13 1.3016 3.9093 0.8441

16 1.6140 4.2427 0.8899
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rameter entering is the size of the coupling connection—i.e.,
its geometrical width—compared to a typical wavelength.
The first waves after the excitation which come from system
1 into system 2 enter a silent territory and cause the first
excitations there. The next waves coming from system 1,
however, encounter these first excitations in system 2 and
interfere with them constructively or destructively. This pro-
cess continues and, of course, after being excited in system
2, waves also travel back into system 1. For smaller times,
this complicated dynamics certainly depends strongly on the
realization of the coupling. This is clearly so in the numerical
calculation of Ref.f23g. Nevertheless, the long-time behav-
ior, in particular the saturation limit, shows universal charac-
teristics, consistent with general features of quantum chaotic
systems; see Ref.f3g. In the energy domain, this is borne out
in the fact that the correlations on smaller energy scales are
described by universal RMT features, while system-specific
properties show up on larger scales, leading to deviations
from the RMT prediction. To avoid confusion, we emphasize
that these universal RMT features include those in the pres-
ence of symmetry breaking. By system-specific properties

we mean, most importantly, the scales set by the shortest
periodic orbits.

It is worthwhile to realize that the chaoticity of the indi-
vidual subsystems before the coupling is not crucial, if the
coupling itself introduces enough chaos. We tested numeri-
cally that the behavior of the corresponding model for two
regular subsystems coupled chaotically shows the same
qualitative behavior. The saturation value is reached slightly
faster, which simply means that time is rescaled. Finally, we
mention that our model is not restricted to elastomechanics.
It would also apply to coupled quantum dots and other
coupled systems.
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